Expression of Sox and fibrillar collagen genes in lamprey larval chondrogenesis with implications for the evolution of vertebrate cartilage.
نویسندگان
چکیده
Lampreys possess unique types of cartilage in which elastin-like proteins are the dominant matrix component, whereas gnathostome cartilage is mainly composed of fibrillar collagen. Despite the differences in protein composition, the Sox-col2a1 genetic cascade was suggested to be conserved between lamprey pharyngeal cartilage and gnathostome cartilage. We examined whether the cascade is conserved in another type of lamprey cartilage, the trabecular cartilage. We found that SoxD and SoxE are expressed in both trabecular and pharyngeal cartilages. However, trabecular cartilage shows no clade A fibrillar collagen gene expression, including genes expressed in pharyngeal cartilage of this animal. On the basis of these observations, we propose that lampreys possess an ancestral type of cartilage that is similar to amphioxus gill cartilage, and in this respect, gnathostome cartilage can be regarded as derived for the loss of elastin-like protein as a cartilage component and recruitment of fibrillar collagen, which is included as a minor component in the ancestral cartilage, as the main component.
منابع مشابه
Designing of Human Cartilage Tissue, by Differentiation of Adipose-Derived Stem Cells With BMP-6 in Alginate Scaffold
Purpose: In the present study the effect of BMP-6 was investigated on chondrogenesis of adiposederived stem cells. Materials and Methods: Mesenchymal stem cells derived from subcutaneous adipose tissue were cultured on alginate scaffold to induce chondrogenesis in experimental group, with chondrogenic medium having BMP-6 growth factor for 3 weeks. In control group medium without BMP-6 was appli...
متن کاملLamprey type II collagen and Sox9 reveal an ancient origin of the vertebrate collagenous skeleton.
Type II collagen is the major cartilage matrix protein in the jawed vertebrate skeleton. Lampreys and hagfishes, by contrast, are thought to have noncollagenous cartilage. This difference in skeletal structure has led to the hypothesis that the vertebrate common ancestor had a noncollagenous skeleton, with type II collagen becoming the predominant cartilage matrix protein after the divergence o...
متن کاملStudy of Expression Level of Cartilage Genes in Rat Articular Chondrocyte Monolayer and 3D Cultures using Real Time PCR
Purpose: to compare the expression level of certain genes related to cartilage and non-cartilage tissues at monolayer and alginate cultures derived from rat articular cartilage. Materials and Methods: Articular cartilage was harvested from knee joints of 10 male rats and was digested using enzymatic solution consisting of 0.2% collagenase I and 0.1% pronase. Released chondrocyte were then plate...
متن کاملHagfish and lancelet fibrillar collagens reveal that type II collagen-based cartilage evolved in stem vertebrates.
The origin of vertebrates was defined by evolution of a skeleton; however, little is known about the developmental mechanisms responsible for this landmark evolutionary innovation. In jawed vertebrates, cartilage matrix consists predominantly of type II collagen (Col2alpha1), whereas that of jawless fishes has long been thought to be noncollagenous. We recently showed that Col2alpha1 is present...
متن کاملSmall Molecule-BIO Accelerates and Enhances Marrow-Derived Mesenchymal Stem Cell in Vitro Chondrogenesis
Background: Hyaline cartilage defects exhibit a major challenge in the field of orthopedic surgery owing to its limited repair capacity. On the other hand, mesenchymal stem cells (MSCs) are regarded as potent cells with a property of cartilage regeneration. We aimed to optimize marrow-derived MSC chondrogenic culture using a small bioactive molecule referred to as BIO. Methods: MSCs from the ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental zoology. Part B, Molecular and developmental evolution
دوره 310 7 شماره
صفحات -
تاریخ انتشار 2008